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Minimum Mass Structures
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Abstract. The problem of the axial vibration of a cantilever
beam is investigated numerically. The mass distribution that
minimizes the total mass for a given fundamental frequency
constraint is determined using both the sequential ordinary
gradient-restoration algorithm (SOGRA) and an ad hoc modifi-

cation of the modified quasilinearization algorithm (MQA).
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Notation

Modulus of elasticity, 1b £t 2

Normalized mass of the beam, I==M*/Mo //
Length of the beam, ft

Normalized mass per unit length, m==ML/Mo

Mass per unit length, 1b ft 2 sec?

Tip mass, 1lb ft T sec?

Total mass of the beam, lb ft L sec?
Normalized axial coordiante, x=X/L

Axial coordinate, ft

Normalized axial displacement, u=Y(X)/Y(L)
Axial displacement, ft

Frequency parameter, B8 = wLV (p/E)

Density, 1lb £t™4 sec?

Natural frequency, sec T

Superscript

Derivative with respect to the normalized axial
coordinate x (for example, u' =du/dx)

[ ACCESSION for
NTIS Waite Secthm

pDe Ouft Gt O
UNAINCURCED a
JUSTIFICATION

L -y —
DISTRIURONAYACLARRITY

Dist.  Avii. and Zor SPECIAL

f|

-




ks Introduction

In this report, we consider the numerical determination
of minimum mass structures with specified natural frequencies.
Specifically, we investigate the problem of the axial vibration
of a cantilever beam: we determine the mass distribution that
minimizes the total mass for a given fundamental frequency
constraint.

The above problem has been investigated analytically by
Turner (Ref. 1) within the frame of the following formulation:

minimize the integral

L
I= S mdx , (1)
0

with respect to the functions u(x) and m(x) which satisfy the

differential equation
(mu') "' + Bzmu= 0 (2)
and the boundary conditions4
u(0) =0, (3)
u(l) =1, m(l)u' (1) = 82 . (4)

In the above equations, m is the mass per unit length, u is
the axial displacement, B is the frequency parameter, and I

is the total mass of the rod. The prime denotes derivative

4Equation (4-1) is a normalization condition for the displace-
ment function u(x).
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with respect to the axial coordinate x.
Turner (Ref. 1) proved that the above problem admits the

following analytical solution:
u = sinh(Bx) /sinh(R), (5)
m = Bsinh(8)cosh(8) /cosh? (8x) , (6)

with the implication that the minimum value of the total mass

of the rod is

I=sinh?(8) . (7)




2. Optimal Control Formulation

Prior to investigating numerically the above problem, we
reformulate it by using the terminology of optimal control
theory.

First Formulation. We introduce the following variables:

t=x, X, =u, x2=u', w=u", x3=m, (8)
and rewrite problem (l1)-(4) as follows: minimize the integral

1

I= s x3dt ” (9)
0

with respect to the functions xl(t), xz(t), x3(t) , w(t) which

satisfy the differential constraints

x1=x2 > (10)
Xy =W, (11)
X, ==(w+ 82x )X,/%X (12)
3 ki L= IRy

and the boundary conditions
x1(0) =0, (13)
x (=1,  x,(L)x;1) =82, (14)

In the above equations, xl(t), xz(t) ’ x3(t) denote the state

variables and w(t) denotes the control variable.




Second Formulation. Upon introducing the auxiliary

state variable x4(t) defined by
= X X (15)

and upon eliminating x3(t) , we see that the previous problem

can be reformulated as follows: minimize the integral
1
I= SO (x4/x2)dt ’ (16)

with respect to the functions xl(t), xz(t), x4(t), w(t) which

satisfy the differential constraints

xl=x2, (17)
x2=w, (18)
x, = -82x%. %, /% (19)
4 gy (i

and the boundary conditions
xl(O) =0, (20)
X, (1) =1 x, (1) = 82 (21)
1 4 4 =

Once a solution xl(t), xz(t), x4(t), w(t) is obtained, the elimi-

nated state variable x,(t) can be computed from

x3=x4/x2 " (22)




Redundant Constraints. Problem (16)-(21)is singular,

in that the control w(t) appears linearly. Ordinarily, mean-
ingful solutions can only be obtained by imposing some appro-
priate bound on the state and/or the control, for instance,

a bound of the form
0<w(t)<k. (23)

If a bound of type (23) is imposed, then the optimal solution

is generally composed of subarcs of the following kind:

(1) w=0, (24-1)
(ii) Hw= 0, (24-2)
(iii) w=k, (24-3)

where H denotes the Hamiltonian function
H=X,/X,= A X, = A, W+ A Bzxx/x 5 (25)
4772 12 2 4 174772
Since
(26)

we see that Egs. (24) can be rewritten as

(i) w=0, (27-1)
(ii) Az=0 ’ (27-2)
(iii) w=k . (27-3)




For the particular problem under consideration, certain

simplifying circumstances exist. Owing to the fact that
x2(0) = free, xz(l) = free, (28)

the natural boundary conditions arising from the transversality

condition require that
AZ(O) =0, >\2(l)=0 ¢ (29)

Since these boundary conditions are consistent with (27-2), it
is natural to postulate that the extremal arc includes a

single subarc (ii), along which
Ay (8) =0, gt ., (30)

The result represented by (30) has two implications.
First, the two-sided inequality (23) is redundant, provided k
is sufficiently large. Second, the differential constraint
(18) is also redundant. If one disregards (18), then
the variable xz(t) appears in nonderivated form only; hence,
xz(t) becomes the control variable v(t) of the following
simplified formulation.

Third Formulation. Upon disregarding (18) and (23), and

upon setting

V=X, (31)




g

we obtain the following optimal control problem: minimize the

integral

i
I= j (x4/V)dt, (32)
0

with respect to the functions xl(t), x4(t), v(t) which satisfy

the differential constraints

1=VI (33)

S,
x4—-6 xlx4/v, (34)

and the boundary conditions
xl(O) =0, (35)

2

x, (1) =1, x4(l) =0 (36)

Once a solution xl(t), x4(t), v(t) is obtained, the elim-

inated variables xz(t) and x3(t) can be computed from

=Y , (37)
x3=x4/v. (38)

This formulation differs from the previous two formulations
for two reasons: (i) it involves two differential constraints,
rather than three; and (ii) the resulting optimal control

problem is nonsingular (Refs. 2-3).
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3 Analytical Solution

It can be readily verified that the previous optimal

control problem has the following analytical solution:

x, = sinh(8t)/sinh(8) , (39-1)

x, = B2cosh(8) /cosh (Bt) , (39-2)

v = Bcosh (Bt) /sinh(B) , (39-3)
so that

x2==Bcosh(Bt)/sinh(B), (40-1)

x, = Bsinh (8) cosh (8) /cosh?® (8t) , (40-2)
and

I=sinh?(8) . (41)
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4. Numerical Solutions

Problem (32)-(36) was solved numerically at Rice Univer-
sity, Houston, Texas, using both the sequential ordinary
gradient-restoration algorithm (SOGRA, Ref. 4) and an ad hoc
variation of the modified quasilinearization algorithm (MQA,
Ref. 5). Both algorithms were programmed in FORTRAN 1IV.
Computations were performed using an IBM 370/155 computer and
double precision arithmetic. The interval of integration was
divided into 100 steps. The differential systems were inte-
grated using Hamming's modified predictor-corrector method with
a special Runge-Kutta procedure to start the integration routine.
Definite integrals (such as I, P, Q) were computed using a
modified Simpson's rule. Here, I denotes the functional being
minimized, P is the cumulative constraint error, and Q is the
cumulative error in the optimality conditions. For the defini-
tion of P and Q, see Refs. 4 and 5.

Experimental Conditions, SOGRA. The following nominal

funtions were employed in order to start the sequential

gradient-restoration algorithm:

xl(t) =t, (42-1)

x, (t) = g%exp[8? (1 - £%) /2] , (42-2)

vit) =1, (42-3)
|




s
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These nominal functions are consistent with the constraints

(33)-(36). Three values of the frequency parameter were em-

ployed, namely,
i Gra A B=n/2 B=1. (43)

The sequential ordinary gradient-restoration algorithm
was programmed to stop whenever a solution consistent with the

following inequalities was obtained:5
P< E-08, Q< E-03.. (44)

Convergence was achieved in N=2 iterations for B=7m/4, N=9
iterations for B=1m/2, and N=29 iterations for B=mw.

Experimental Conditions, MQA. The converged solutions

generated with SOGRA were employed as the nominal functions for
the modified quasilinearization algorithm. The modified quasi-
linearization algorithm was programmed to stop whenever a

solution consistent with the following inequalities was obtained:

P<E-12, Q<E-12. (45)

3 +ab
The symbol Et ab stands for 10- 3
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Convergence was achieved in N=1 iteration for B=7m/4, N=1
iteration for B=7/2, and N=4 iterations for B=1m.

Numerical Results. Table 1 presents summary results

pertaining to SOGRA at convergence. For each value of the
frequency parameter B, the table shows the number of iterations
for convergence N, the computed value of the functional I, the
exact value of the functional Ie . the number of correct signi-
ficant digits M (determined by comparing I with Ie), the con-
straint error P, and the error in the optimality conditions Q.
Clearly, as far as the minimum mass is concerned, the solutions
obtainéd are precise to M=4 significant digits for B=7/4, to
M=5 significant digits for B=7m/2, and to M= 2 significant
digits for B=1m .

Table 2 presents summary results pertaining to MQA at
convergence. Clearly, as far as the minimum mass is concerned,
the solutions obtained are precise to M= 7 significant digits
for all values of the frequency parameter 8.

Tables 3-5 present the converged solutions xl(t), xz(t),
x3(t), x4(t), v(t) obtained with SOGRA, and Tables 6-8 present
the converged solutions obtained with MQA. The latter solu-
tions agree with the analytical solutions (39)-(40) to at least

4 significant digits at each time station t.
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S . Discussion and Conclusions

In this report, we have investigated numerically the
problem of the axial vibration of a cantilever beam. We have
determined the mass distribution that minimizes the total mass
for a given fundamental frequency constraint. The original
problem is difficult because of its singular character (see
first and second formulations). However, the transformed
problem is nonsingular (one of the differential constraints is
redundant, see third formulation).

We solved the above problem employing both the sequential
ordinary gradient-restoration algorithm (Ref. 4) and the modi-
fied quasilinearization algorithm (Ref. 5). Using SOGRA, we
determined a preliminary solution relatively close to the op-
timum solution. Then, this preliminary solution was employed
in conjunction with MQA in order to determine a more precise
approximation to the optimum solution.

Concerning the minimum value of the functional I, the
SOGRA solutions are precise to M=4 significant digits for
B=m/4, M=5 significant digits for 8=1m/2, and M=2 signifi-
cant digits for R=1m. On the other hand, the MQA solutions are
precise to M=7 significant digits for all values of the fre-

quency parameter B8 .
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i Table 1. Summary results, SOGRA.
i
B N I Ie M P Q
T/4 2 0.7545936E+00 0.7545892E+00 4 0.21E-32 0.15E-04
m/2 9 0.5295951E+01 0.5295977E+01 5 0.99E-08 0.88E-03
T 29 0.1346253E+03 0.1333734E+03 2 0.60E-33 0.97E-03
Table 2. Summary results, MQA.
8 N I Ie M P Q
' n/4 1 0.7545892E+00 0.7545892E+00 7 0.23E-14 0.10E-30
n/2 1 0.5295977E+01 0.5295977E+01 7 0.74E-17 0.10E-30
T 4 0.1333734E+03 0.1333734E+03 7 0.34E-13 0.10E-30
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Table 3. SOGRA solution, B=m/4, N=2, P<E-08, Q< E-03.
t 3 X, X3 X, v
0.0 0.0000E+00 0.9011E+00 0.9064E+00 0.8168E+00 0.9011E+00
0.1 0.9021E-01 0.9042E+00 0.9005E+00 0.8143E+00 0.9042E+00
0.2 0.1810E+00 0.9133E+00 0.8833E+00 0.8068E+00 0.9133E+00
0.3 0.2730E+00 0.9285E+00 0.8558E+00 0.7946E+00 0.9285E+00
0.4 0.3669E+00 0.9496E+00 0.8194E+00 0.7781E+00 0.9496E+00
0.5 0.4632E+00 0.9765E+00 0.7759E+00 0.7577E+00 0.9765E+00
0.6 0.5624E+00 0.1009E+01 0.7273E+00 0.7339E+00 0.1009E+01
0.7 0.6652E+00 0.1047E+01 0.6755E+00 0.7074E+00 0.1047E+01
0.8 0.7720E+00 0.1090E+01 0.6223E+00 0.6787E+00 0.1090E+01
0.9 0.8835E+00 0.1138E+01 0.5693E+00 0.6483E+00 0.1138E+01
1.0 0.1000E+01 0.1191E+01 0.5175E+00 0.6168E+00 0.1191E+01

I =0.7545936E+00
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Table 4. SOGRA solution, g=m/2, N=9, P<E-08, Q<E-03.

t Xl X2 X3 X4 v

0.0 0.0000E+00 0.6828E+00 0.9060E+01 0.6186E+01 0.6828E+00
0.1 0.6854E-01 0.6907E+00 0.8847E+01 0.6111E+01 0.6907E+00
0.2 0.1387E+00 0.7153E+00 0.8238E+01 0.5893E+01 0.7153E+00
0.3 0.2122E+00 0.7583E+00 0.7328E+01 0.5557E+01 0.7583E+00
0.4 0.2910E+00 0.8205E+00 0.6261E+01 0.5137E+01 0.8205E+00
0.5 0.3770E+00 0.9025E+00 0.5173E+01 0.4669E+01 0.9025E+00
0.6 0.4722E+00 0.1007E+01 0.4154E+01 0.4185E+01 0.1007E+01
0.7 0.5794E+00 0.1139E+01 0.3254E+01 0.3708E+01 0.1139E+01
0.8 0.7011E+00 0.1301E+01 0.2504E+01 0.3258E+01 0.1301E+01
0.9 0.8405E+00 0.1490E+01 0.1908E+01 0.2844E+01 0.1490E+01
1.0 0.1000E+01 0.1701E+01 0.1449E+01 0.2467E+01 0.1701E+01

I=0.5295951E+01
e
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Table 5. SOGRA solution, B=m, N=29, P<E-08, Q< E-03.

t Xy X, X3 Xy v

¢.0 0.0000E+00 0.2857E+00 0.4264E+03  0.1218E+03  0.2857E+00
0.1 0.2899E-01 0.3100E+00 0.3747E+03 0.1161E+03 0.3100E+00
0.2 0.6136E-01 0.3466E+00 0.2925E+03 0.1014E+03 0.3466E+00
0.3 0.9965E-01 0.4254E+00 0.1941E+03  0.8261E+02  0.4254E+00
0.4 0.1478E+00 0.5471E+00 0.1175E+03  0.6431E+02 0.5471E+CO
0.5 0.2109E+00 0.7252E+00 0.6715E+02 0.4870E+02 0.7252E+00
0.6 0.2958E+00 0.9891E+00 0.3677E+02 0.3637E+02 0.9891E+00
0.7 0.4118E+00 0.1344E+01 0.2008E+02 0.2699E+02  0.1344E+0l
0.8 0.5663E+00 0.1748E+01 0.1132E+02 0.1979E+02 0.1748E+01
0.9 0.7621E+00 0.2168E+01 0.6547E+01  0.1419E+02 0.2168E+01
1.0 0.1000E+01 0.2588E+01 0.3813E+01 0.9869E+01  0.2588E+0l

I=0.1346253E+03
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Table 6. MQA solution, 8=n/4, N=1, P<E-12, Q<E-12.

t X X, X3 X, v

0.0 0.0000E+00 0.9041E+00 0.9037E+00 0.8170E+00 0.9041E+00
0.1 0.9050E-01 0.9069E+00 0.8981E+00 0.8145E+00 0.9069E+00
0.2 0.1815E+00 0.9153E+00 0.8817E+00 0.8071E+00 0.9153E+00
0.3 0.2737E+00 0.9293E+00 0.8553E+00 0.7949E+00 0.9293E+00
0.4 0.3676E+00 0.9491E+00 0.8200E+00 0.7783E+00 0.9491E+00
0.5 0.4637E+00 0.9747E+00 0.7775E+00 0.7578E+00 0.9747E+00
0.6 0.5627E+00 0.1006E+01 0.7293E+00 0.7340E+00 0.1006E+01
0.7 0.6652E+00 0.1044E+01 0.6774E+00 0.7074E+00 0.1044E+01
0.8 0.7718E+00 0.1088E+01 0.6234E+00 0.6786E+00 0.1088E+00
0.9 0.8831E+00 0.1139E+01 0.5688E+00 0.6482E+00 0.1139E+01
1.0 0.1000E+01 0.1197E+01 0.5150E+00 0.6168E+00 0.1197E+01

I=0.7545892E+00
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Table 7. MQA solution, B=1/2, N=1, P<E-12, Q<E-12.
t Xq X, X4 Xy v
0.0 0.0000E+00 0.6825E+00 0.9070E+01 0.6191E+01 0.6825E+00
0.1 0.6853E-01 0.6910E+00 0.8850E+01 0.6115E+01 0.6910E+00
0.2 0.1387E+00 0.7165E+00 0.8230E+01 0.5897E+01 0.7165E+00
0.3 0.2124E+00 0.7597E+00 0.7320E+01 0.5562E+01 0.7597E+00
0.4 0.2913E+00 0.8217E+00 0.6257E+01 0.5142E+01 0.8217E+00
0.5 0.3774E+00 0.9041E+00 0.5169E+01 0.4673E+01 0.9041E+00
0.6 0.4729E+00 0.1008E+01 0.4152E+01 0.4188E+01 0.1008E+01
0.7 0.5800E+00 0.1138E+01 0.3260E+01 0.3711E+01 0.1138E+01
0.8 0.7015E+00 0.1296E+01 0.2514E+01 0.3260E+01 0.1296E+01
0.9 0.8403E+00 0.1486E+01 0.1913E+01 0.2843E+01 0.1486E+01
1.0 0.1000E+01 0.1712E+01 0.1440E+01 0.2467E+01 0.1712E+01
I=0.5295977E+01
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Table 8. MQA solution, B=m, N=4, P<E-12, Q<E-12.

!

‘ t Xy X, Xq Xy v

i
0.0 0.0000E+00 0.2720E+00 0.4205E+03 0.1144E+03 0.2720E+00
0.1 0.2765E-01 0.2855E+00 0.3816E+03 0.1089E+03 0.2855E+00
0.2 0.5805E-01 0.3275E+00 0.2901E+03 0.9502E+02 0.3275E+00
0.3 0.9423E-01 0.4020E+00 0.1925E+03 0.7740E+02 0.4020E+00
0.4 0.1397E+00 0.5166E+00 0.1166E+03 0.6024E+02 0.5166E+00
0.5 0.1992E+00 0.6825E+00 0.6680E+02 0.4559E+02 0.6825E+00
0.6 0.2785E+00 0.9164E+00 0.3705E+02 0.3395E+02 0.9164E+00
0.7 0.3855E+00 0.1241E+01 0.2019E+02 0.2506E+02 0.1241E+01
0.8 0.5309E+00 0.1690E+01 0.1089E+02 0.1841E+02 0.1690E+01
0.9 0.7292E+00 0.2306E+01 0.5847E+01 0.1349E+02 0.2306E+01
1.0 0.1000E+01 0.3153E+01 0.3129E+01 0.9869E+01 0.3153E+01

I=0.1333734E+03

}

|

|
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